

DURACOIL

Quench and tempered technology in challenging CT shale operations

October 24th, 2018

Garry McClelland-VP Engineering

Improved Reliability in Shale Plays

- 1. What is the current performance of Q and T?
- 2. What failure modes continue to shorten life?
- 3. What are the improvements?
- 4. What do we need to focus on?

Hoproked & eliat bibity inestealed by the second se

- 1. What is the current performance of Q and T?
- 2. What failure modes continue to shorten life?
- 3. What are the improvements?
- 4. What do we need to focus on?

Q&T Shipments

Q&T Commercial Release

SHALE PLAY DISTRIBUTION

90% of US orders converted to a Quench and Tempered Product

Q&T North America Field Performance

Avg. 54% RF increase NAM

2.625" CT

Quench and Temper-North America Field Performance

Conventional 100 | 110 vs DC 110

Service Life - Running Footage

Q&T Fatigue Model Development vs. Competition

Q&T North America Field Performance

Average Fatigue Spike at Retirement

GLOBAL'

Failure Modes

Q&T Retirement Mechanisms

CONVENTIONAL GRADE

Q&T 110

Conventional Tube Retirement Mechanisms

CONVENTIONAL 100 | 110 - Running Feet Performance vs. Reason for Retirement

Q&T Retirement Mechanisms

Q&T 110 - Running Feet Performance vs. Reason for Retirement

Mechanical Damage

Q&T Retirement Mechanisms-Mechanical Damage

Q&T Retirement Mechanisms-Abrasion

Abrasion:

- An increase in hardness will yield better abrasion resistance, but the agitators currently being used are extremely aggressive, causing localized abrasion at multiple locations in the horizontal sections.
- Relaxing the helix with a short trip and the use of pipe on pipe friction reducers can help minimize damage
- Appropriate string design can also optimize reach while minimizing contact forces in the horizontal section

Q&T Retirement Mechanisms

Mechanical Damage: Abrasion in the horizontal and possible High Cycle Fatigue Damage to the coil?

Credit: Scott McCracken with TTS via Linkedin

Q&T Retirement Mechanisms-Abrasion

Mechanical Damage: Abrasion in the horizontal near the BHA

Q&T Retirement Mechanisms-Abrasion

Mechanical Damage: Abrasion in the horizontal at BHA and 500M UH

Q&T Retirement Mechanisms-HCF?

Mechanical Damage: Ductile type failures near whip end-could this be attributed to agitators?

Can We Prevent Mechanical Damage?

Can We Prevent Mechanical Damage?

- Pipe on Pipe FR
- Resetting the Helix with short trips
- String Design

Q&T Retirement Mechanisms-Abrasion

Whip End Geometry?

Refresher: Theory Of Buckling

Helical buckling load at a point along the tubing inside the wellbore.

$$F_{\text{helical buckling load}} = -\sqrt{1 + \mu} \sqrt[4]{\left(\frac{8\text{EI}}{r_{c}}\right)^{2} \left[\left(\text{Fd}\theta + dW_{b}\sin\theta\right)^{2} + \left(\text{Fd}\gamma\sin\theta\right)^{2}\right]}$$

Force friction due to helical buckling.

$$F_{buckling friction} = \frac{\mu r_c F_c^2}{4EI} dL$$

Wall contact force over the section of the tubing inside the wellbore.

WCF =
$$\sqrt{(d\gamma^2 \sin^2 \theta + d\theta^2)F^2 - 2W_b \sin \theta d\theta F + (W_b \sin \theta)^2}$$

- dW_h Derivative of buoyant weight
- $d\gamma$ Derivative of azimuth
- D heta Derivative of inclination
- E Young's Modulus of the CT material (30 x10⁻⁶psi)
- *F* Effective axial force in the CT at a position of interest in the wellbore
- *I* Area moment of inertia of CT cross-section
- L Length of the section
- *Ic* Radial clearance of the CT in the Annulus
- WCF Wall contact force
- heta Inclination at a point in the well
- μ Friction coefficient

Sinusoidal

Helical

CT Engineered Design Example 2³/₈" CT

Engineered CT Solution

Hourglass CT Configuration

Extended Reach

Heavy wall is strategically placed to maximize reach and durability

Proper Section Length of Minimum Wall Thickness

The thinnest wall thickness would never be at surface while working in the lateral of the wells

Corrosion

Q&T Retirement Mechanisms-Corrosion

- A comparison of the full circumference often shows preferential to one side or the other
- This would suggest the corrosion may be happening between jobs

Q&T Retirement Mechanisms

Corrosion:

 An improvement in microstructure still requires us to manage fluids

Q&T Retirement Mechanisms-Corrosion

MIC related corrosion still prominent

Can we prevent corrosion?

Can we prevent corrosion?

- Biocides- During job or after completion?
- Pigging/flushing programs- Circulate ball to flush fluids
- Inhibitors- After job
- Careful attention to H₂S mitigation- Q&T is not the silver bullet and all CT needs careful inhibition and mitigation in sour environments

Technical Development – Q&T

Q&T 110 Sour immersion testing results compared to CT-90

Test Solution	Test Gas	Temp (°F)	Duration (Hours)
NACE MR0175/ISO 15156-2 Table B.1 5% mass fraction NaCl + 0.4% mass fraction CH3COONa with a starting pH of 3.7	1.4% H2S CO2	77°±5°	> 168
Modified NACE MR0175/ISO 15156-2 Table B.1 23.4% mass fraction NaCl + 3% mass fraction CH₃COON₂ with a starting pH of 3.7	7% H2S CO2		

- Fatigued testing using 60" Radius at 5,200 psi.

- Combination of base and bias welds

Improvements!

Q&T[™] Diametral Growth: Prediction vs. Reality

Performance of Q&T with 2³/₈" [60.33mm] CT

Field Actual OD Bias Welds × 0 Field Actual OD Base Model Predicted Diameter ---- Nominal OD 2.525 CT Diameter (in) 2.500 2.475 2.450 2.425-2.425 2.400 2.350 22,000 ft Depth - Whip-end 0 ft

CT String Post Retirement Diametral Growth Analysis

—Working Pressures: 6,500 psi – 8,500 psi

[45 Mpa – 59 Mpa]

Q&T Results

Challenges

-Substantial reduction in ballooning compared to predicted model

Q&T Improvements in Reach

Length Distribution for Conventional vs. Q&T

Q&T Increases in Diameter and Length

Conventional Coiled Tubing Manufacturing Process

Bias welds in conventional coiled tubing:

- Inherently contain discontinuities in the microstructure
- Are susceptible to heat affected zone deformation during cycling
- Can fracture quickly through coarse grained microstructure

Q&T Microstructural Improvement

*Tube samples tested to same conditions to same fatigue machine cycles

2.375" CT x 0.204" Metallography After the same number of fatigue machine cycles:

- Microstructure of Q&T bias weld is superior to traditional CT manufacturing methods
- Fine grained structures improve fatigue and corrosion resistance

Q&T Microstructural Improvement

Conventional vs. Q&T

 Conventional CT microstructure has fine banding longitudinally and a cast bias weld microstructure

 Quench and Tempered CT microstructure is martensitic which improves mechanical properties and creates a more uniform microstructure

Q&T Modeling Improvements

3D view of our fatigue tests that span the ranges of stresses and strains seen during CT operations

Quench and Temper-North America Field Performance

Service Life - Running Footage

Q&T Modeling Improvements

Average Fatigue Spike at Retirement

Mechanical Damage

Abrasion

Corrosion

HCF

Thank You. Any Questions?

Garry McClelland-VP, Engineering gmcclelland@global-tubing.com

Improvements!