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H2S Corrosion

• Iron becomes anode and H2S 
becomes cathode

• 𝐹𝑒 + 𝐻2𝑆 + 𝐻2𝑂 → 𝐹𝑒𝑆 +
2𝐻 + 𝐻2𝑂

• Normally atomic hydrogen 
will recombine to molecular 
hydrogen 𝐻2

• Sulfur restricts 
recombination of hydrogen



Hydrogen Absorption and Diffusion

• Monatomic hydrogen 
is absorbed into the 
steel

• Hydrogen diffuses 
through steel and 
concentrates in areas 
of high stress in the 
iron lattice (SSC) or 
weak internal 
interfaces (HIC)



Hydrogen Induced Cracking (HIC)

• Hydrogen recombines at weak internal interfaces 
(inclusions, laminations, etc.)

• Does not require stress
• Hydrogen recombines into molecular hydrogen
• More common in steels with yield strength <100 ksi
• Steels containing sulfur and phosphorus are more 

susceptible 



Sulfide Stress Cracking

• Monatomic hydrogen remains in 
iron lattice

• Requires tensile stress
• Produced brittle fracture 

oriented transverse to stress
• Fractures occur as stress levels 

below yield
• More common in higher 

strength steels



NACE MR0175/ISO 15156 – Option 1

• Doesn’t apply to coiled tubing, but …..

• For 𝑃𝐻2𝑆 < 0.3 kPa (0.05 psi) “… no special 

precautions are required …”

• For 𝑃𝐻2𝑆 ≥ 0.3 kPa (0.05 psi)

– Heat treatment condition

– max hardness 22 HRC

– <1% Ni

– >1100 F stress relief (𝜀 > 5%)



NACE MR0175/ISO 15156 – Option 2
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Partial Pressure

• Boyle’s law: 𝑃𝑉 = 𝐶 The 
higher the pressure, the 
more gas molecules per 
volume

• Dalton’s law 
𝑃𝑖

𝑃
=

𝑛𝑖

𝑛
The 

partial pressure of a gas 
component is 
proportional to it’s 
concentration

• Henry’s law - the 
amount of dissolved gas 
is proportional to its 
partial pressure in the 
gas phase



pH

• Logarithmic 
measure of 
hydrogen ion 
concentration

• Provides 
source of 
monatomic 
hydrogen if 
sulfur is 
present



Temperature

Source: Townsend (1972) 

• Maximum susceptibility 
to SSC and HIC occurs at 
ambient temperature

• This appears 
contradictory with the 
fact that the hydrogen 
diffusion rate increases 
with temperature

• At higher temperatures 
the surface film may be 
reducing hydrogen 
adsorption rate



Inhibitors and Scavengers

• Inhibitors have, in general, proven effective in 
reducing H2S corrosion, but what about SSC and 
HIC?

• Inhibitors are typically fatty amine based and 
attach to the FeS film layer on the tube surface

• Surface film becomes hydrophobic, significantly 
decreasing water activity and hydrogen ion 
concentration

• Scavengers can reduce H2S concentration



SSC Testing and Results

• Applied stress (usually % of SMYS or AYS)
• 30 day duration
• Typically ambient temperature and pressure
• Solution A – pH 2.6 to 2.8, 1 bar H2S
• Solution B - pH 3.4 to 3.6, 1 bar H2S

NACE TM0177

Method A
UT

Method B
FPB

Method C
CR

Method D
DCB



SSC Testing With and Without Inhibitor
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SSR Testing and Results

• Strain rate of 1 X 10-6

• Strain continues to 
failure

• Compare time to 
failure in inert and 
sour environments

Slow Strain Rate Testing 
(SSRT)



SSRT With and Without Inhibitor

Source: McCoy (2005) 



Sour Fatigue Testing and Results

• Full size bend 
fatigue samples 
are exposed in 
sour 
environment for 
4 to 7 days

• Samples are 
transported on 
dry ice to bend 
fatigue machine

• Samples are repeatedly bent at straightened with internal 
pressure until fracture occurs

• Comparison made of fatigue life with and without sour 
exposure



Base Tube Sour Fatigue Without 
Inhibitor

Source: Padron (2010) 



Base Tube Sour Fatigue With Inhibitor

Source: Padron (2010) 



Bias Weld Sour Fatigue Without 
Inhibitor

Source: Padron (2010) 



Bias Weld Sour Fatigue Without 
Inhibitor

Source: Padron (2010) 



BlueCoil Sour Fatigue Life Without 
Inhibitor
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Conclusions

• Time to SSC failure in sour environments were typically <10 hours

• Inhibitors proved effective at reducing susceptibility to SSC

• Cumulative fatigue prior to testing did not significantly increase 
susceptibility to SSC

• Ignoring HIC failures, the sour fatigue life was essentially constant (50%-
60%) and independent of grade and H2S partial pressure (within the range 
tested)

• HIC will significantly reduce sour fatigue life

• HIC failures increased with H2S partial pressure and decreased with 
increasing tube SMYS

• Inhibition does not extend sour fatigue life, except for avoiding HIC

• Bias weld sour fatigue life is significantly lower than base tube sour fatigue 
life
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