An update of sour performance testing and field performance

Bruce Reichert, PhD Tenaris Coiled Tubes

ienaris Colled Tubes

Overview

- Damage Mechanisms
- Industry Standards
- Governing Parameters
- Mitigation Methods
- Testing and Results
- Conclusions

H₂S Corrosion

- Iron becomes anode and H₂S becomes cathode
- $Fe + H_2S + H_2O \rightarrow FeS + 2H + H_2O$
- Normally atomic hydrogen will recombine to molecular hydrogen H₂
- Sulfur restricts recombination of hydrogen

Hydrogen Absorption and Diffusion

- Monatomic hydrogen is absorbed into the steel
- Hydrogen diffuses through steel and concentrates in areas of high stress in the iron lattice (SSC) or weak internal interfaces (HIC)

Hydrogen Induced Cracking (HIC)

- Hydrogen recombines at weak internal interfaces (inclusions, laminations, etc.)
- Does not require stress
- Hydrogen recombines into molecular hydrogen
- More common in steels with yield strength <100 ksi
- Steels containing sulfur and phosphorus are more susceptible

Sulfide Stress Cracking

- Monatomic hydrogen remains in iron lattice
- Requires tensile stress
- Produced brittle fracture oriented transverse to stress
- Fractures occur as stress levels below yield

NACE MR0175/ISO 15156 – Option 1

- Doesn't apply to coiled tubing, but
- For P_{H2S} < 0.3 kPa (0.05 psi) "... no special precautions are required ..."
- For $P_{H_2S} \ge 0.3 \text{ kPa} (0.05 \text{ psi})$
 - Heat treatment condition
 - max hardness 22 HRC
 - <1% Ni
 - ->1100 F stress relief ($\varepsilon > 5\%$)

NACE MR0175/ISO 15156 – Option 2

Partial Pressure

- Boyle's law: PV = C The higher the pressure, the more gas molecules per volume
- Dalton's law $\frac{P_i}{P} = \frac{n_i}{n}$ The partial pressure of a gas component is proportional to it's concentration
- Henry's law the amount of dissolved gas is proportional to its partial pressure in the gas phase

Oxygen + Nitrogen

Pressure 752 mm Hg

рΗ

- Logarithmic measure of hydrogen ion concentration
- Provides source of monatomic hydrogen if sulfur is present

H S	I †	pH SCALE	H+
10 º mol/l	1 mol/l	ی عن 0	6
10 ⁻¹ mol/l	100 mmol/l	1	0.1
10 -2 mol/l	10 mmol/l	2	0.01
10 ⁻³ mol/l	1 mmol/l	3	0.001
10 -4 mol/l	100 µmol[[4	0.0001
10 ^{-s} mol/l	10 µmol{l	5	0.00001
10 ⁻⁶ mol/l	1 µmol[l	6 (G	0.000001
10 -7 mol/l	100 nmol/l	7	0.0000001
10 ⁻⁸ mol/l	10 nmol/l	8	0.0000001
10 -9 mol/l	1 nmol/l	· × 9 · ∖ j	0.00000001
10 -10 mol/l	100 pmol/l	10	0.000000001
10 ⁻¹¹ mol/l	10 pmol/l	11/	0.0000000001
10 ⁻¹² mol/l	1 pmol/l	12	0.00000000001
10 -13 mol/l	100 fmoll	13 5	0.0000000000000
10 ⁻¹⁴ mol/l	10 fmol/l	14 8	0.0000000000000

6

Temperature

- Maximum susceptibility to SSC and HIC occurs at ambient temperature
- This appears contradictory with the fact that the hydrogen diffusion rate increases with temperature
- At higher temperatures the surface film may be reducing hydrogen adsorption rate

Inhibitors and Scavengers

- Inhibitors have, in general, proven effective in reducing H₂S corrosion, but what about SSC and HIC?
- Inhibitors are typically fatty amine based and attach to the FeS film layer on the tube surface
- Surface film becomes hydrophobic, significantly decreasing water activity and hydrogen ion concentration
- Scavengers can reduce H₂S concentration

SSC Testing and Results

NACE TM0177

- Applied stress (usually % of SMYS or AYS)
- 30 day duration
- Typically ambient temperature and pressure
- Solution A pH 2.6 to 2.8, 1 bar H_2S
- Solution B pH 3.4 to 3.6, 1 bar H_2S

SSC Testing With and Without Inhibitor

Source: McCoy (2005)

SSR Testing and Results

- Slow Strain Rate Testing (SSRT)
- Strain rate of 1 X 10⁻⁶
- Strain continues to failure
- Compare time to failure in inert and sour environments

SSRT With and Without Inhibitor

Source: McCoy (2005)

Sour Fatigue Testing and Results

- Full size bend fatigue samples are exposed in sour environment for 4 to 7 days
- Samples are transported on dry ice to bend fatigue machine

- Samples are repeatedly bent at straightened with internal pressure until fracture occurs
- Comparison made of fatigue life with and without sour exposure

Base Tube Sour Fatigue Without Inhibitor

Base Tube Sour Fatigue With Inhibitor

Bias Weld Sour Fatigue Without Inhibitor

Source: Padron (2010)

Figure 13. Bias welds sour fatigue performance

Bias Weld Sour Fatigue Without Inhibitor

Source: Padron (2010)

Figure 13. Bias welds sour fatigue performance

BlueCoil Sour Fatigue Life Without Inhibitor

Sour Fatigue Results

Cycles to Failure

Conclusions

- Time to SSC failure in sour environments were typically <10 hours
- Inhibitors proved effective at reducing susceptibility to SSC
- Cumulative fatigue prior to testing did not significantly increase susceptibility to SSC
- Ignoring HIC failures, the sour fatigue life was essentially constant (50%-60%) and independent of grade and H₂S partial pressure (within the range tested)
- HIC will significantly reduce sour fatigue life
- HIC failures increased with H₂S partial pressure and decreased with increasing tube SMYS
- Inhibition does not extend sour fatigue life, except for avoiding HIC
- Bias weld sour fatigue life is significantly lower than base tube sour fatigue life

References

- H. E. Townsend, Jr., "Hydrogen Sulfide Stress Corrosion Cracking of High Strength Steel Wire," Corrosion Vol. 28, No. 2, pp. 39-46, (1972)
- T. McCoy, "SSC Resistance of QT-900 Coiled Tubing," paper SPE 93786, SPE/ICoTA Coiled Tubing Conference and Exhibition, The Woodlands, Texas, April 12-13, (2005)
- T. Padron, "Sour Serviceability of Higher-Strength Coiled Tubing: Final Results," paper SPE 130279, SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, Texas, March 23-24, (2010)
- R. Hampson, C. Moir and T. Freeney, "Working With Coiled Tubing in H2S and CO2 Wells: A Global Perspective," paper SPE 121294, SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, Texas, March 31-April 1, (2009)
- R. D. Kane and M. S. Cayard, "Roles of H2S in the Behavior of Engineering Alloys: A Review of Literature and Experience," paper NACE 274, Corrosion 98 (1998)
- "Petroleum and Natural Gas Industries, Materials for use in H2S-environments in Oil and Gas Production," NACE International Standard MR0175, ISO 15156, 1st Edition (2003)
- M. Valdez, C. Morales, C., R. Rolovic, R. and B. Reichert, B., "The Development of High-Strength Coiled Tubing with Improved Fatigue Performance and H2S Resistance," paper SPE 173639, SPE/ICoTA Coiled Tubing and Well Intervention Conference and Exhibition, The Woodlands, Texas, March 24-25, (2015)