Wellbore Diagnostics & Evaluation Using Fiber-Optic Enabled Coiled Tubing

Leak Detection & Production Logging Case Studies
Agenda

- Technology & Theory
- Application of the principles
- Case Studies
 - Leak Detection
 - Flow Analysis
- Summary
Distributive Temperature Sensing

- Fiber-optic enabled coiled tubing
- No moving parts, downhole electronics, external components, etc.
- Building a temperature profile of the entire wellbore over time

- Monitoring downhole temperature
- Interpretation of the temperature response allows correlation of the anomaly
Joule Thomson Effect

- Temperature of a liquid or gas changes as a function of its pressure (constant enthalpy)

- Temperature response of flowing fluid or gas allows interpretation of flow rates

- Important for interpretation in horizontal wellbores

\[\Delta T = \mu_{JT} \Delta P \]
Applications of DTS

- Leak detection
- Flow analysis
 - Production
 - Injection
- Water detection
- Gas lift monitoring
- Matrix acidizing
- SAGD / Steam chamber monitoring
 - Well integrity
DTS Leak Detection

- Leaks are often very difficult to spot
 - Temperature alone is by no means the only/best solution

- To identify a leak, a temperature anomaly needs to be created
 - Typically by flowing fluid through the leak

- The larger the anomaly the better
 - High pressure drop with gas
 - Water/oil has smaller JT effect
 - Large leaks have smaller pressure drops across them
Case Study 1: Leak Detection

- Horizontal +/- 3500m

- Multi-stage open hole completion with debris subs and stage tool

- Multiple ball activated seats

- During fracturing operation
 - Drop ball to open the next sleeve
 - No pressure response
 - Drop a second ball
 - Still no pressure response
 - Attempt to pressure up the wellbore with no success
 - Suspected stage tool open/leaking
Case Study 1: Proposed Solution

- **Run 1: Venturi & DTS**
 - Attempt to capture the 2 unseated balls
 - Inject fluid and perform DTS log
 - Identify any temperature anomalies

- **Run 2: Manually confirm stage tool is closed**
 - Eliminate possibility of leaks through stage tool

- **Run 3: DTS**
 - Manually seal the ball seat that would not pressure up (seat # 9)
 - Inject fluid and perform DTS log
 - Identify any temperature anomalies
Case Study 1: Run #1 – Injection
Case Study 1: Run #1 – Warm Back
Case Study 1: Run #3 - Injection
Case Study 1: Run #3 – Warm Back
Case Study 1: Conclusions

- The first DTS measurement indicated cooling behind the completion (between stage tool and anchor packer)
 - Was not sufficient to indicate a leak
 - Less thermal conductivity between stage tool and formation

- The second DTS measurement indicated a large temperature change at frac port #17
 - Indicated the all of fluid was flowing through this leak instead of down the well

- Allows informed decision for the remaining well program
Flow Analysis - Production

- Horizontal Gas Well
- Relies on the Joule-Thomson effect
- $\Delta T = \mu_{JT} \Delta P$
- Thermal model matched to DTS data
- Qualitative Analysis
- Considerations
 - Fluid production – masks JT
 - Gas production – JT effect
 - Flow Path
Case Study 2: Flow Analysis

- Horizontal shale gas well / +4000m PBTD
- Cemented plug and perf completion
- 8 stages and 25+ perforations
- Well flowing at an average of 46 E³m³/day (1.6 MMSCF/day)
- Objective: Production log to evaluate completion effectiveness (each stage’s contribution)
- Challenges:
 - Convey logging tools through 60.3mm tubing into 139.7 mm casing
 - Sand / debris downhole can negatively affect conventional spinners
 - Risk of leaving tool segments downhole
- Perform DTS log
 - Measure equilibrium temperatures during flow period
 - Shut in well to monitor warm back
 - Match thermal model to measured temperatures
 - Correlate flow rate according to induced JT temperature change
Select Depths – Temp and Press

Flowing @ 46 E3m3/day

6 Hour Shut In
Case Study 2: Temperature vs Depth

- Flowing @ 46 E3m3/day
- 6 Hour Shut In
- 40 Minutes After Shut In
- Joules Thompson Cooling
Case Study 2: Thermal Model
Case Study 2: Conclusion

- Joule Thomson cooling allows correlation of flowing gas rates at each perforation

- Contribution of each stage:

<table>
<thead>
<tr>
<th>Stage</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution</td>
<td>8%</td>
<td>10%</td>
<td>13%</td>
<td>13%</td>
<td>17%</td>
<td>5%</td>
<td>7%</td>
<td>27%</td>
<td>100</td>
</tr>
</tbody>
</table>

- Indicates each stage is producing

- Uppermost stage is contributing the largest portion of gas

- Completed without long BHA tool strings
Case Study 3: Flow Analysis

- Horizontal shale gas well / +4500m PBTD
- Multi-stage open hole completion
- 14 ball activated sleeves
- Well flowing at an average of 85 E^3 m^3/day (3.0 MMSCF/day)

Objective: Production log to evaluate completion effectiveness (each stage’s contribution)

Challenges:
- Sand / debris downhole can negatively affect conventional spinners
- Risk of leaving tool segments downhole

Perform DTS log
- Measure equilibrium temperatures during flow period
- Shut in well to monitor warm back
- Match thermal model to measured temperatures
- Correlate flow rate according to induced JT temperature change
Case Study 3: Inverted Temp Profile

Joule-Thomson cooling at shut-in fractures indicating they have been flowing
Case Study 3: Temperature vs Depth

DTS just after shut-in

Shut-in DTS

Flowing DTS

Joule-Thomson cooling of shut-in fractures
Case Study 3: Thermal Model

- Therma model fit to flowing DTS
- Shut-in DTS
- Geothermal
- DTS just after shut-in
- Flowing DTS
- Model Joule-Thomson inflow temperature
- Model flow distribution
Case Study 3: Conclusion

- DTS measurements showed temperature responses at the sleeves
- Only 5 of the 14 fractures displayed temperature responses.
- Joule Thomson cooling allowed correlation of flow rates
- Distribution of flow:

<table>
<thead>
<tr>
<th>Sleeve</th>
<th>4</th>
<th>5</th>
<th>7</th>
<th>8</th>
<th>11</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contribution</td>
<td>6%</td>
<td>11%</td>
<td>20%</td>
<td>48%</td>
<td>15%</td>
<td>100</td>
</tr>
</tbody>
</table>

- Completed without long BHA tool string
Summary

- DTS can be a very effective method of detecting leaks
 - Temperature response must be induced
 - The larger the anomaly the higher the certainty
 - Provides real time measurements
- Joule Thomson effect can be used to correlate flow rates based on the thermal response of flowing gas or liquids
- DTS logging can help address challenges of conventional production logging
 - Debris / sand within the wellbore
 - Change in completion or restricted profiles
 - Reduces chances of lost tools
- Candidate wells are evaluated on an individual basis
 - Production rates (Gas / Water / Oil)
 - Drawdown pressures
Thank You!