Improved methods, technology & best practices create savings in composite plug milling operations

William Handy – Applications Engineering Manager, Baker Hughes
October 24th, 2013
Definition of Problems

• Stuck Coil
 – Large Debris
 – Low Annular Velocity

• Slow Progress
 – Washing Sand
 – Slow Mill Times

• Extra Trips
 – Short Trips
 • Hole Cleaning
 – Long Trips
 • BHA replacement
 • Cutting Coil
Definition of Problems

- Stuck Coil
 - Large Debris
 - Low Annular Velocity

- Slow Progress
 - Washing Sand
 - Slow Mill Times

- Extra Trips
 - Short Trips
 - Hole Cleaning
 - Long Trips
 - BHA replacement
 - Cutting Coil
Definition of Problems

- Stuck Coil
 - Large Debris
 - Low Annular Velocity
- Slow Progress
 - Washing Sand
 - Slow Mill Times
- Extra Trips
 - Short Trips
 - Hole Cleaning
 - Long Trips
 - BHA replacement
 - Cutting Coil

Solutions

- Mill Design
Definition of Problems

- **Stuck Coil**
 - Large Debris
 - Low Annular Velocity
- **Slow Progress**
 - Washing Sand
 - Slow Mill Times
- **Extra Trips**
 - Short Trips
 - Hole Cleaning
 - Long Trips
 - BHA replacement
 - Cutting Coil

Solutions

- **Mill Design**
- **Application Specific Carbide**
Definition of Problems

- Stuck Coil
 - Large Debris
 - Low Annular Velocity
- Slow Progress
 - Washing Sand
 - Slow Mill Times
- Extra Trips
 - Short Trips
 - Hole Cleaning
 - Long Trips
 - BHA replacement
 - Cutting Coil

Solutions

- Mill Design
- Application Specific Carbide
- High Flow Motors
Definition of Problems

• Stuck Coil
 – Large Debris
 – Low Annular Velocity
• Slow Progress
 – Washing Sand
 – Slow Mill Times
• Extra Trips
 – Short Trips
 • Hole Cleaning
 – Long Trips
 • BHA replacement
 • Cutting Coil

Solutions

• Mill Design
• Application Specific Carbide
• High Flow Motors
• Milling Parameters
Definition of Problems

• Stuck Coil
 – Large Debris
 – Low Annular Velocity
• Slow Progress
 – Washing Sand
 – Slow Mill Times
• Extra Trips
 – Short Trips
 • Hole Cleaning
 – Long Trips
 • BHA replacement
 • Cutting Coil

Solutions

• Mill Design
• Application Specific Carbide
• High Flow Motors
• Milling Parameters
• Plug Design
Section 1

MILL DESIGN
Mill Design
Mill Design
Mill Design

Circulation

Sand
Section 2

APPLICATION SPECIFIC CARBIDE
Application Specific Carbide

• Optimizing Metallurgy & Form Factor Yields:
 – Increased Durability
 – Increased Rate of Penetration
 – Decreased Cuttings Size
Carbide Metallurgy

Tough & Durable

- Junk Milling
- Composite Plug Milling
- Casing Exit String Mill

Hard & Sharp

- Pilot Milling
- Packer Milling
- Casing Exit Window Mill
Case History

- **79 plugs** milled with one mill
 - Two wells
 - Williston, ND
 - Bakken Formation
 - 3-3/4” Mill
 - 2-7/8” Motor
Section 3
OTHER CONSIDERATIONS
Workover Motors

- High Flow Rate 2-7/8” Motors
 - Higher Annular Velocities
 - More Power
 - Decreased Durability

- 3”+ Motors
 - Higher Annular Velocities
 - More Power
 - Increased Durability & Strength
 - Transportation and Handling Issues
Milling Parameters

Cuttings Size

Milling Speed
Plug Design

- Hidden Slip Features
- All Cast Iron is NOT Created Equal
 - Cast Iron Type A: 1 min./in3
 - Cast Iron Type B: 7 min./in3

- Ceramic Buttons
 - Very Little Material
 - Very High Hardness

- Aluminum
QUESTIONS

THANK YOU